Search results

1 – 10 of over 1000
Article
Publication date: 16 February 2021

Jeffrey D. Wall and Prashant Palvia

The authors seek to understand the formation of control- and security-related identities among organizational employees through and interpretive narrative analysis. The authors…

Abstract

Purpose

The authors seek to understand the formation of control- and security-related identities among organizational employees through and interpretive narrative analysis. The authors also seek to identify how the identities form over time and across contexts. Several identities are identified as well as the changes that may occur in the identities.

Design/methodology/approach

Few interpretive or critical studies exist in behavioral information security research to represent employee perspectives of power and control. Using qualitative interviews and narrative analysis of the interview transcripts, this paper analyzes the security- and control-related identities and values that employees adopt in organizational settings.

Findings

Two major categories of behavioral security compliance identities were identified: compliant and noncompliant. Specific identities within the compliant category included: faithful follower vs the reasoned follower, and other-preserving versus the self-preserving identities. The noncompliant category included: anti-authority identity, utilitarian identity, trusting identity and unaware identity. Furthermore, three patterns of identity changes were observed.

Research limitations/implications

The authors’ narrative stories suggest that employee identities are complex and multi-faceted, and that they may be fluid and adaptive to situational factors. Future research should avoid assumptions that all employees are the same or that employee beliefs remain constant over time or in different contexts. Identities are also strongly rooted in individuals' rearing and other life experiences. Thus, security control is far broader than is studied in behavioral studies. The authors find that history matters and should be examined carefully.

Practical implications

The authors’ study provides insights that managers can use to enhance security initiatives. It is clear that different employees build different control-related identities. Managers must understand that their employees are unique and will not all respond to policies, punishments, and other forms of control in the same way. The narratives also suggest that many organizations lack appropriate programs to enhance employees' awareness of security issues.

Originality/value

The authors’ narrative analysis suggests that employee security identities are complex and multi-faceted, and that they are fluid and adaptive to situational factors. Research should avoid assumptions that all employees are the same or that their beliefs remain constant over time or in different contexts. Identities are also strongly rooted in individuals' rearing and other life experiences. Their history matters and should be examined carefully.

Details

Information Technology & People, vol. 35 no. 1
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 6 August 2018

Ling Jiang, Kristijan Mirkovski, Jeffrey D. Wall, Christian Wagner and Paul Benjamin Lowry

Drawing on sensemaking and emotion regulation research, the purpose of this paper is to reconceptualize core contributor withdrawal (CCW) in the context of online peer-production…

Abstract

Purpose

Drawing on sensemaking and emotion regulation research, the purpose of this paper is to reconceptualize core contributor withdrawal (CCW) in the context of online peer-production communities (OPPCs). To explain the underlying mechanisms that make core contributors withdraw from these communities, the authors propose a process theory of contributor withdrawal called the core contributor withdrawal theory (CCWT).

Design/methodology/approach

To support CCWT, a typology of unmet expectations of online communities is presented, which uncovers the cognitive and emotional processing involved. To illustrate the efficacy of CCWT, a case study of the English version of Wikipedia is provided as a representative OPPC.

Findings

CCWT identifies sensemaking and emotion regulation concerning contributors’ unmet expectations as causes of CCW from OPPCs, which first lead to declined expectations, burnout and psychological withdrawal and thereby to behavioral withdrawal.

Research limitations/implications

CCWT clearly identifies how and why important participation transitions, such as from core contributor to less active contributor or non-contributor, take place. By adopting process theories, CCWT provides a nuanced explanation of the cognitive and affective events that take place before core contributors withdraw from OPPCs.

Practical implications

CCWT highlights the challenge of online communities shifting from recruiting new contributors to preventing loss of existing contributors in the maturity stage. Additionally, by identifying the underlying cognitive and affective processes that core contributors experience in response to unexpected events, communities can develop safeguards to prevent or correct cognitions and emotions that lead to withdrawal.

Originality/value

CCWT provides a theoretical framework that accounts for the negative cognitions and affects that lead to core contributors’ withdrawal from online communities. It furthers the understanding of what motivates contributing to and what leads to withdrawal from OPPC.

Article
Publication date: 14 June 2022

Sreenadh Sreedharamalle, Sumalatha Baina and Srinivas A.N.S.

This paper aims to investigate the flow of two-layered non-Newtonian fluids with different viscosities in an axisymmetric elastic tube.

Abstract

Purpose

This paper aims to investigate the flow of two-layered non-Newtonian fluids with different viscosities in an axisymmetric elastic tube.

Design/methodology/approach

A mathematical model was considered for this study to describe the flow characteristics of two-layered non- Newtonian Jeffrey fluids in an elastic tube. Because Jeffrey fluid model is a better model for the description of physiological fluid motion. Further, this model is a significant generalization of Newtonian fluid model. Analytical expressions for flux, stream functions, velocities and interface velocity have been derived in terms of elastic parameters, inlet, outlet and external pressures. The effects of various pertinent parameters on the flow behavior have been studied.

Findings

The volumetric flow rate was calculated by different models of Mazumdar (1992) and Rubinow and Keller (1972); from this it was found that the flux of Jeffrey fluid is more in the case of Rubinow and Keller model than Mazumdar. A comparative study is made between single-fluid and two-fluid models of Jeffrey fluid flows and it was observed that more flux and higher velocities were observed in the case of two-fluid model rather than single-fluid model. Furthermore, when both the Jeffrey parameter tends to zero and ratios of viscosities and radii are unity, the results in this study agree with those of Rubinow and Keller (1972).

Originality/value

To describe the fluid flow in an elastic tube with two-layered systems, the models and solutions developed here are very important. These results will be highly suitable in analyzing the rheological characteristics of blood flow in a small blood vessel because of their elastic nature.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 October 2022

Meenakumari Ramamoorthy and Lakshminarayana Pallavarapu

The present work explores the influence of Hall and Ohmic heating effects on the convective peristaltic flow of a conducting Jeffrey nanofluid in an inclined porous asymmetric…

Abstract

Purpose

The present work explores the influence of Hall and Ohmic heating effects on the convective peristaltic flow of a conducting Jeffrey nanofluid in an inclined porous asymmetric channel with slip. Also, the authors investigated the impact of viscous dissipation, thermal radiation, heat generation/absorption and cross diffusion effects on the flow. Peristaltic flow has many industrial and physiological applications and most of the biofluids show the non-Newtonian fluid behaviour. Further, in a living body, several biofluids flow through different kinds of systems that are not symmetric, horizontal or vertical. The purpose of this paper is to address these issues.

Design/methodology/approach

The authors considered the flow of Jeffrey fluid which is generated by a sinusoidal wave propagating on the walls of an inclined asymmetric channel. The flow model is developed from the fixed frame to the wave frame. Finally, yield the nonlinear governing equations by applying the non-dimensional quantities with the assumptions of lengthy wave and negligible Reynolds number. The exact solution has been computed for the velocity and pressure gradient. The solutions for temperature and concentration are obtained by the regular perturbation technique.

Findings

Graphical analysis is made for the present results for different values of emerging parameters and explained clearly. It is noticed that the magnetic field enriches the temperature where it drops the fluid velocity. This work describes that the temperature field is decreasing due to the radiation but it is a rising function of temperature slip parameter. The temperature profile declines for growing values of the Hall parameter. The flow velocity diminishes for boosting values of the Darcy parameter. Further, the authors perceived that the concentration field reduces for large values of the chemical reaction parameter.

Originality/value

The authors validated and compared the results with the existing literature. This investigation will help to study some physiological systems, and heat transfer in peristaltic transport plays key role in medical treatments, so we ensure that these results are applicable in medical treatments like cancer therapy, drug delivery, etc.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 October 2017

A.M. Abd-Alla, S.M. Abo-Dahab and Abdullah Alsharif

The purpose of this paper is to study the peristaltic flow of a Jeffrey fluid in an asymmetric channel, subjected to gravity field and rotation in the presence of a magnetic…

120

Abstract

Purpose

The purpose of this paper is to study the peristaltic flow of a Jeffrey fluid in an asymmetric channel, subjected to gravity field and rotation in the presence of a magnetic field. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitude and phase. The flow is investigated in a wave frame of reference moving with the velocity of the wave. Involved problems are analyzed through long wavelength and low Reynolds number.

Design/methodology/approach

The analytical expressions for the pressure gradient, pressure rise, stream function, axial velocity and shear stress have been obtained. The effects of Hartmann number, the ratio of relaxation to retardation times, time-mean flow, rotation, the phase angle and the gravity field on the pressure gradient, pressure rise, streamline, axial velocity and shear stress are very pronounced and physically interpreted through graphical illustrations. Comparison was made with the results obtained in the asymmetric and symmetric channels.

Findings

The results indicate that the effect of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, rotation, the phase angle and the gravitational field are very pronounced in the phenomena.

Originality/value

In the present work, the authors investigate gravity field, and rotation through an asymmetric channel in the presence of a magnetic field has been analyzed. It also deals with the effect of the magnetic field and gravity field of peristaltic transport of a Jeffrey fluid in an asymmetric rotating channel.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 June 2021

A.M. Abd-Alla, S.M. Abo-Dahab, M.A. Abdelhafez and Esraa N. Thabet

This article aims to describe the effect of an endoscope and heat transfer on the peristaltic flow of a Jeffrey fluid through the gap between concentric uniform tubes.

Abstract

Purpose

This article aims to describe the effect of an endoscope and heat transfer on the peristaltic flow of a Jeffrey fluid through the gap between concentric uniform tubes.

Design/methodology/approach

The mathematical model of the present problem is carried out under long wavelength and low Reynolds number approximations. Analytical solutions for the velocity, temperature profiles, pressure gradient and volume flow rate are obtained.

Findings

The results indicate that the effect of the wave amplitude, radius ratio, Grashof number, the ratio of relaxation to retardation times and the radius are very pronounced in the phenomena. Also, a comparison of obtaining an analytical solution against previous literatures shows satisfactory agreement.

Originality/value

Analytical solutions for the velocity, temperature profiles, pressure gradient and volume flow rate are obtained. Numerical integration is performed to analyze the pressure rise and frictional forces on the inner and outer tubes.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 October 2017

A.M. Abd-Alla, S.M. Abo-Dahab and M. Elsagheer

The purpose of this paper is to predict the effects of magnetic field, heat and mass transfer and rotation on the peristaltic flow of an incompressible Newtonian fluid in a…

Abstract

Purpose

The purpose of this paper is to predict the effects of magnetic field, heat and mass transfer and rotation on the peristaltic flow of an incompressible Newtonian fluid in a channel with compliant walls. The whole system is in a rotating frame of reference.

Design/methodology/approach

The governing equations of two-dimensional fluid have been simplified under long wavelength and low Reynolds number approximation. The solutions are carried out for the stream function, temperature, concentration field, velocity and heat transfer coefficient.

Findings

The results indicate that the effects of permeability, magnetic field and rotation are very pronounced in the phenomena. Impacts of various involved parameters appearing in the solutions are carefully analyzed.

Originality/value

The effect of the concentration distribution, heat and mass transfer and rotation on the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. A comparison was made with the results obtained in the presence and absence of rotation, magnetic field and heat and mass transfer.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 August 2016

R. Ellahi, M. M. Bhatti and Ioan Pop

The purpose of this paper is to theoretically study the problem of the peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct under the effects of Hall and ion slip…

Abstract

Purpose

The purpose of this paper is to theoretically study the problem of the peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct under the effects of Hall and ion slip. An incompressible and magnetohydrodynamics fluid is also taken into account. The governing equations are modelled under the constraints of low Reynolds number and long wave length. Recent development in biomedical engineering has enabled the use of the periastic flow in modern drug delivery systems with great utility.

Design/methodology/approach

Numerical integration is used to analyse the novel features of volumetric flow rate, average volume flow rate, instantaneous flux and the pressure gradient. The impact of physical parameters is depicted with the help of graphs. The trapping phenomenon is presented through stream lines.

Findings

The results of Newtonian fluid model can be obtained by taking out the effects of Jeffrey parameter from this model. No-slip case is a special case of the present work. The results obtained for the flow of Jeffrey fluid reveal many interesting behaviours that warrant further study on the non-Newtonian fluid phenomena, especially the shear-thinning phenomena. Shear-thinning reduces the wall shear stress.

Originality/value

The results of this paper are new and original.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 September 2017

M. Kothandapani and V. Pushparaj

This paper aims to investigate the consequence of the combined impacts of an induced magnetic field and thermal radiation on peristaltic transport of a Carreau nanofluid in a…

Abstract

Purpose

This paper aims to investigate the consequence of the combined impacts of an induced magnetic field and thermal radiation on peristaltic transport of a Carreau nanofluid in a vertical tapered asymmetric channel. The model applied for the nanofluid comprises the effects of Brownian motion and thermophoresis.

Design/methodology/approach

The governing equations have been simplified under the widespread assumption of long-wavelength and low-Reynolds number approximations. The reduced coupled nonlinear equations of momentum and magnetic force function have also been solved analytically using the regular perturbation method.

Findings

The physical features of emerging parameters have been discussed by drawing the graphs of velocity, temperature, nanoparticle concentration profile, magnetic force function, current density, heat transfer coefficient and stream function. It has been realized that the magnetic force function is increased with the increase of Hartmann number, magnetic Reynolds number and mean flow rate.

Originality/value

It may be first paper in which the effect of induced magnetic field on peristaltic flow of non-Newtonian nanofluid in a tapered asymmetric channel has been studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 February 2014

T. Hayat, Z. Iqbal, M. Mustafa and A. Alsaedi

This investigation has been carried out for thermal-diffusion (Dufour) and diffusion-thermo (Soret) effects on the boundary layer flow of Jeffrey fluid in the region of…

Abstract

Purpose

This investigation has been carried out for thermal-diffusion (Dufour) and diffusion-thermo (Soret) effects on the boundary layer flow of Jeffrey fluid in the region of stagnation-point towards a stretching sheet. Heat transfer occurring during the melting process due to a stretching sheet is considered. The paper aims to discuss these issues.

Design/methodology/approach

The authors convert governing partial differential equations into ordinary differential equations by using suitable transformations. Analytic solutions of velocity and temperature are found by using homotopy analysis method (HAM). Further graphs are displayed to study the salient features of embedding parameters. Expressions of skin friction coefficient, local Nusselt number and local Sherwood number have also been derived and examined.

Findings

It is found that velocity and the boundary layer thickness are increasing functions of viscoelastic parameter (Deborah number). An increase in the melting process enhances the fluid velocity. An opposite effect of melting heat process is noticed on velocity and skin friction.

Practical implications

The boundary layer flow in non-Newtonian fluids is very important in many applications including polymer and food processing, transpiration cooling, drag reduction, thermal oil recovery and ice and magma flows. Further, the thermal diffusion effect is employed for isotope separation and in mixtures between gases with very light and medium molecular weight.

Originality/value

Very scarce literature is available on thermal-diffusion (Dufour) and diffusion-thermo (Soret) effects on the boundary layer flow of Jeffrey fluid in the region of stagnation-point towards a stretching sheet with melting heat transfer. Series solution is developed using HAM. Further, the authors compare the present results with the existing in literature and found excellent agreement.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000